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JPEG2000 Encoding With
Perceptual Distortion Control

Zhen Liu, Lina J. Karam, Senior Member, IEEE, and Andrew B. Watson

Abstract—In this paper, a new encoding approach is proposed
to control the JPEG2000 encoding in order to reach a desired
perceptual quality. The new method is based on a vision model that
incorporates various masking effects of human visual perception
and a perceptual distortion metric that takes spatial and spectral
summation of individual quantization errors into account. Com-
pared with the conventional rate-based distortion minimization
JPEG2000 encoding, the new method provides a way to generate
consistent quality images at a lower bit rate.

Index Terms—Distortion control, embedded coding, human vi-
sual system (HVS), JPEG2000, perception.

I. INTRODUCTION

J PEG2000 is the new still image compression standard. Like
other image and video compression standards, JPEG2000

only specifies the decoder compatible bit-stream syntax, and has
left enough room for innovations in the encoder and decoder
design. This work is motivated by the following observations of
current JPEG2000 code design.

Current publicly available JPEG2000 code (Verification
Model [1], JASPER [2], JJ2000 [3], and Kakadu [4]) all
adopted the rate-based distortion minimization encoding ap-
proach. This approach requires the end user to specify the
desired bit rate (for SNR progressive, a set of increasing rates).
The encoder tries to meet the rates while minimizing the dis-
tortion. The adopted distortion is typically a weighted mean
squared error (MSE)-based distortion. For a lot of applications,
the end user prefers a consistent quality. Different images
when coded at the same bit rate can result in different visual
qualities. Therefore, finding a rule to determine the bit rate
that results in a desired image quality is not an easy task. For
visual information, the human eye is the ultimate receiver.
When considering image quality, one definitely should take the
human visual system (HVS) into consideration.

JPEG2000 [4] consists of two encoding stages known as
tier-1 and tier-2 coding, respectively. After a wavelet-transform
stage, the image subbands are divided into equal-size coding
blocks. In order to minimize the (weighted) MSE for the desired

Manuscript received January 9, 2004; revised June 14, 2005. This work was
supported by the National Science Foundation under Grant CCR-9733897. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. David S. Taubman.

Z. Liu is with Qualcomm, San Diego, CA 92121 USA (e-mail: zhenl@
qualcomm.com).

L. J. Karam is with the Department of Electrical Engineering, Arizona State
University, Tempe, AZ 85287 USA (e-mail: karam@asu.edu).

A. B. Watson is with NASA Ames Research Center, Moffett Field, CA 94035
USA (e-mail: abwatson@mail.arc.nasa.gov).

Digital Object Identifier 10.1109/TIP.2006.873460

bit rate, a rate-distortion optimization process is adopted be-
tween the tier-1 and tier-2 stages. In tier-1 coding, each coding
block (typically of size 64 64 or 32 32) is independently
bit-plane coded from the most significant bit-plane (MSB) to
the least significant bit-plane (LSB) using three coding passes
(except for the MSB which is coded using only one “clean up”
coding pass). For bitplanes, this results in a total number
of coding passes. An embedded bit-stream is then
generated for each coding block. The distortion reduction and
rate increase associated with each coding pass is collected. This
information is then used by a post-compression rate-distortion
optimization (PCRD-opt) stage, which is a rate control proce-
dure used to determine each coding block’s contribution to the
final bit-stream. In tier-2 coding, those included coding passes
from each coding block are organized into a final bit-stream;
those not included are discarded. With a carefully optimized
discrete wavelet transform (DWT) implementation, the em-
bedded block coding tends to dominate the whole encoding
time [5], [6]. So, current encoders waste computational power
and memory on those finally discarded coding passes.

Visual progressive weighting (VIP) [4, Ch. 16, Sec. 16.1.1]
and visual masking [4, Ch. 16, Sec. 16.1.4] have been provided
as an option in some JPEG2000 implementations (Verifi-
cation Model [1] and Kakadu [4]) by setting the weights
of the weighted MSE distortion based on the human visual
system Contrast Sensitivity Function (CSF) and some local
visual masking effects [7]. However, the existing Part 1
JPEG2000-compliant VIP scheme [4, Ch. 16] uses a single
weight for an entire coding block; this weight can only be pro-
gressively adjusted for different quality layers. In addition, as
stated in [4, Ch. 16], a main limitation of the existing JPEG2000
perceptual weighting schemes is that it is only possible to alter
the number of coding passes contributed by whole coding
blocks to any given quality layer. But, even when using the
smaller size 32 32 coding blocks, these coding blocks cor-
respond to large portions of the relevant image components. In
fact, significant subbands in the wavelet decomposition could
consist of very few and even one coding block, which would
then prohibit the exploitation of the local masking variations
in these subbands. These limitations are partially addressed by
the visual optimization tools proposed in [8]; but these latter
tools are not compatible with the baseline (Part 1) JPEG2000
decoder and are, hence, included in Part 2 of the standard.
Furthermore, the existing tools do not fully exploit variations
in the local characteristics of the visual data such as local light
adaptation.

In addition, the existing JPEG2000 (Part 1 and Part 2)
schemes are “rate-based” schemes, meaning that they attempt
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to minimize the distortion (perceptual or MSE) at a given
specified bit-rate and they all make use of the PCRD-opt stage.
These existing schemes mainly make use of a specified bit-rate
(or a set of bit-rates in the SNR progressive mode) rather than
a specified distortion for determining the bit-stream truncation
point for each coding block even when generating different
quality layers (SNR progressive mode). More recently, strate-
gies that truncate the bit-stream based on the rate-distortion
slope values [4, Section 8.2.1], have been proposed in order
to achieve more consistent quality [9]. However, none of the
existing proposed tools provide a way to control the encoding
process to reach a desired quality as we are proposing.

This paper presents a new distortion-based JPEG2000 en-
coding scheme that is fully compatible with Part 1 of the
JPEG2000 standard, with the objective to minimize the bit rate
for a desired target quality. The proposed scheme achieves the
minimum bit-rate for a given desired distortion in a noniter-
ative manner and directly as part of the tier-1 coding stage.
So, there is no need for a tier-2 coding stage. Although any
quality metric, including MSE-based ones, can be used with
the proposed encoding scheme, we adopt a perceptual-based
distortion metric in order to exploit the luminance and contrast
masking properties of the HVS. The multiresolution wavelet
decomposition and the two-tier coding structure of JPEG2000
make it extremely suitable to incorporate a locally adaptive
HVS model into the JPEG2000 coder design.

Our method is based on a vision model that incorporates
various masking effects of human visual perception and a per-
ceptual distortion metric that takes spatial and spectral summa-
tion of individual quantization errors into account. Given the
wavelet transformed coefficients, the coder adaptively com-
putes the local distortion sensitivity profiles in the form of
detection thresholds that adapt to the varying local frequency,
orientation and spatial characteristics of the visual information.
The derived thresholds are then used to control the embedded
bitplane coding in order to meet the desired target perceptual
quality.

This paper is organized as follows. In Section II, the adopted
perceptual model is introduced. The perceptual detection thresh-
olds and the perceptual distortion metric are described in de-
tails. In Section III, the existing rate-based JPEG2000 encoding
approach is discussed. The new JPEG2000 encoding with per-
ceptual distortion control is presented in Section IV. Experi-
mental results and comparison with the conventional rate-based
JPEG2000 encoding are reported in Section V. A conclusion is
given in Section VI.

II. PERCEPTUAL MODEL

The first step in designing an image coder with perceptual
distortion control is to select a perceptual vision model. The
HVS perception can be modeled as a collection of channels that
are selective in terms of frequency and orientation [10]. Each
channel responds to a range of frequencies (frequency band-
width) and orientations (orientation bandwidth) about some pre-
ferred center frequency and orientation . Different chan-
nels have different center frequencies and orientations that span
the full range of visible frequencies and the full 180 range

Fig. 1. Index of DWT subbands. Each subband is identified by a pair of
integers , where is the level and is the orientation.

of orientations. Measurement of the receptive fields in the vi-
sual cortex revealed that these multi-channel frequency- and ori-
entation-selective components exhibit approximately a dyadic
structure [11]. This can be approximated by the dyadic struc-
ture of the pyramid wavelet decomposition which can decom-
pose the input image into frequency- and orientation-selective
visual components that differ in terms of their sensitivity and
visual masking properties.

Perceptual-based coding algorithms attempt to discriminate
between signal components which are and are not detected by
the human receiver [12]. The main idea in perceptual coding
are 1) to “hide” the coding distortion beneath the detection
threshold, and 2) to augment the classical coding paradigm
of redundancy removal with elimination of perceptually ir-
relevant signal information. This is typically achieved by
exploiting the masking properties of the HVS [13]–[17] and
establishing detection thresholds of just-noticeable distortion
(JND) and minimally noticeable distortion (MND) based on
psycho-physical masking phenomena [18], [19]. This usually
requires computing and making use of image-dependent, lo-
cally varying masking thresholds. The two-tier coding structure
of JPEG2000 gives the coder great flexibility in computing and
using these locally varying thresholds without the need to send
any side information. The clear separation of coding and bit
stream formation provided by the JPEG2000 two-tier coding
structure allows the precise computation of the locally varying
masking thresholds and precise distortion control based on the
true transformed coefficients.

A. JND Thresholds for Wavelet Coefficients

JPEG2000 makes use of the discrete wavelet transform,
which decomposes the image into frequency and orientation
selective subbands. The perceptual model needs one JND
threshold, , for each DWT transformed coef-
ficient at location within subband , where is the
transform level and is the orientation. The orientations are
indexed as 1, 2, 3, 4 corresponding to the , , , and

subbands, respectively, where low (denoted by L) and high
(denoted by H) are in the order horizontal-vertical as illustrated
in Fig. 1. In this work, three visual phenomena are modeled to
compute the JND thresholds: contrast sensitivity, luminance
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TABLE I
BASIS FUNCTION AMPLITUDE FOR A SIX-LEVEL 9/7 DWT

masking (also known as light adaption), and contrast masking.
The JND thresholds are thus computed as

(1)

where is the base detection threshold for a subband
, is the luminance masking adjustment, and

is the contrast masking adjustment.
The base detection threshold is a measure, for

each subband (i.e., for each DWT basis function), of the
smallest contrast that yields a visible signal over a background
of uniform intensity. Contrast is a key concept in vision science
because the response of the HVS depends much less on the
absolute luminance than on the variation of the signal relative to
the surround background, a property known as Weber-Fechner
law [20]. Contrast is a measure of this relative variation. The
necessary contrast to provoke a response from the HVS is
defined as the detection threshold. The inverse of the detection
threshold is the contrast sensitivity. Contrast sensitivity varies
with frequency. With the increase of spatial frequency, the
contrast sensitivity decreases. This important property of the
HVS can be characterized by the contrast sensitivity function
and can be measured using detection experiments.

In detection experiments, the tested subject is presented with
test images and needs only to specify whether the target stim-
ulus is visible or not visible. In [21], the base detection thresh-
olds for the 9/7 discrete wavelet transform are measured using a
two-alternative forced choice (2AFC) procedure. By fitting the
data from the experimental results, a mathematical model for
the JND threshold is formulated as

(2)

where , , and are constants, is the amplitude of the
DWT 9/7 basis function corresponding to level and orientation

, and is the visual resolution of the display in pixels/degree,
which can be calculated as

(3)

where is the viewing distance in cm and is the display res-
olution in pixels/cm. Table I lists the values for a 6-level
DWT decomposition. Table II lists the constants , , and
obtained with a background intensity of 128 [21]. The inverse
of the base threshold defines the sensitivity of the eye in func-
tion of the DWT basis functions’ frequency and orientation and
with a background intensity of 128.

TABLE II
PARAMETERS FOR THE DWT THRESHOLD MODEL FOR THE Y CHANNEL [21]

In (2), the base detection threshold is obtained by fitting the
data collected at one mean background intensity. However, the
detection threshold varies with the background intensity levels,
which is called light adaptation or luminance masking [20]. In
image coding, the detection thresholds will depend on the mean
luminance of the local image region and, therefore, a luminance
masking correction factor must be derived and applied to the
contrast sensitivity profile to account for this variation.

The effect of background intensity level upon the detection
threshold is complex. It involves both vertical and horizontal
shifts of the contrast sensitivity function [22]. In this work, the
luminance masking adjustment is approximated using a power
function [22]

(4)

where is the highest level of the DWT decomposition and
is set to 5 in this work, is the LL subband constant cor-
responding to the mean luminance of the display (128 for an
unsigned 8-bit image). In (4), is the value of the
DWT coefficient, in the LL subband, that spatially corresponds
to location . In this case, and can be calculated as

and , where is the oper-
ation of rounding to the nearest smaller integer. The parameter

controls the degree to which luminance masking occurs and
takes a value of 0.649 [22]. Note that luminance masking can
be suppressed by setting .

Another factor that will affect the detection threshold is the
contrast masking which takes into account the fact that the vis-
ibility of one image component (the target) changes with the
presence of other image components (the masker) [16], [23],
[24]. Contrast masking measures the variation of the detection
threshold of a target signal as a function of the contrast of the
masker. The resulting masking sensitivity profiles are referred
to as target threshold versus masker contrast functions. Within
the framework of image coding, the masker signal is usually
represented by the subband coefficients of the input image to be
coded while the target signal is represented by the distortion or
coding noise. The contrast masking effect can be modeled as

(5)
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where is the self contrast masking adjustment
factor, and is the neighborhood contrast
masking adjustment factor.

The self contrast masking adjustment, , is a
measure of the increase in the detection threshold at the loca-
tion due to a sufficiently large coefficient at that lo-
cation. For the DWT coefficients, it is modeled by the nonlinear
transducer model introduced by Teo and Heeger [25], which is a
piecewise linearization of the contrast masking results demon-
strated by Foley [23], [24]. This model can be expressed as [26]

(6)

where is the DWT coefficient value at location
. For the LL subband, contrast masking is suppressed

by setting . For other subbands, is set to 0.6.
The neighborhood contrast adjustment, ,

takes into consideration the fact that, in the reconstructed im-
ages, the signal (DWT basis function) determined by a wavelet
transformed coefficient is superimposed on other signals deter-
mined by the neighboring wavelet coefficients. There is some
masking effect contributed from spatially neighboring signals
due to the phase uncertainty, receptive field size, as well as
possible longer range effects that increase detection [27]. It is
obtained by a slight modification of the model adopted in [8]
as follows:

(7)

where the neighborhood consists of the coefficients in the same
subband that lie within a window centered at the location ,

denotes the number of coefficients in that neighborhood,
are the neighboring DWT coefficient values, and is a constant
that controls the influence of the amplitude of each neighboring
coefficient. In (7), the parameter , together with , are used
to control the degree of neighborhood masking. However, as
Watson points out in [22], the contrast masking is strongest
when both components are of the same spatial frequency, orien-
tation, and location. Therefore, a contrast masking model based
solely on self contrast masking provides a good conservative
model with much reduced complexity.

B. Perceptual Distortion Metric

While the JND threshold profile provides a localized mea-
sure of the noise threshold for a single wavelet coefficient, a
perceptual distortion metric that also accounts for spatial and
spectral summation of individual quantization errors is needed.
In this work, the probability summation model is adopted [26],
[28], [29].

The probability summation model considers a set of indepen-
dent detectors, one at each location . The probability,

, of detecting a distortion at that location, is then the

probability that detector will signal the occurrence
of a distortion. The probability is determined by the
psychometric function, which is commonly modeled as an ex-
ponential of the form

(8)

where is the quantization error at location
, denotes the detection threshold

at location , and is a parameter whose value is
chosen to maximize the correspondence of (8) with the exper-
imentally determined psychometric function for a given type
of distortion. In the psychophysical experiments that examine
summation over space, a value of of about four has been
observed to correspond well to probability summation [29].
Notice that in (8), a quantization error, , that has a
magnitude equal to the JND threshold results in a detection
probability [28]. This detection probability
usually is referred to as the perceptually lossless coding point.

A less localized probability of error detection can be com-
puted by adopting the “probability summation” hypothesis
which pools the localized detection probabilities over
a region of interest [29]. In the human visual system, highest
visual acuity is limited to the size of the foveal region and
covers approximately of visual angle. Let
denote the area in the spatial domain that is centered at location

and covers 2 of visual angle. The number of pixels
contained in that foveal region, , can be computed
as

(9)

where is the display visual resolution (in pixels/degree) calcu-
lated in (3).

Let denote the set of DWT coefficients whose values affect
the reconstruction. Then, , the probability of
detecting a distortion in the foveal region centered at ,
can be written as

(10)

This probability summation pools the probability of detecting
an error in a foveal region over all DWT coefficients that affect
its reconstruction. It is based on the following two assumptions.
First, a distortion is detected in a foveal region if and only if at
least one detector affecting its reconstruction signals the pres-
ence of a distortion, i.e., if and only if at least one of the distor-
tions is above threshold and, therefore, considered
visible. Second, the probabilities of detection are independent,
i.e, the probability that a particular detector will signal the pres-
ence of a distortion is independent of the probability that any
other detector will.

Substituting (8) in (10) results in

(11)
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Fig. 2. Uniform scalar quantizer with deadzone twice the step size.

where

(12)

In (12), takes the form of a Minkowski metric with
exponent . From (11), it can be seen that minimizing the prob-
ability of detecting a distortion in a foveal region is equivalent
to minimizing the metric .

The distortion measure for the whole image corresponds
to the maximum probability of detecting a distortion over all
possible foveal regions and is obtained by using a Minkowski
metric with for inter-foveal pooling of the distortions

(13)

In (13), the maximum operation gives the worst case per-
ceived error. Under this condition, the minimum bit rate for a
given distortion is achieved when all .

III. CONVENTIONAL JPEG2000 ENCODING

In JPEG2000, an image is first divided into tiles. Each tile is
then coded independently. For each tile, after DC level shifting
and DWT, a scalar quantizer is first applied to each subband.
The quantized samples in each subband are then divided into
coding blocks. The usual code block size is 64 64 or 32
32. Each coding block is then independently bit-plane coded
from the MSB to the LSB. Each bit-plane is fractionally coded
using three coding passes: significant propagation, magnitude
refinement and clean up (except the MSB, which is coded using
the clean up pass). In the three passes, four coding operations,
including significance coding, sign coding, magnitude refine-
ment coding and cleanup coding, are used to code the sample’s
value in the current bitplane (0 or 1) and the sample’s sign (pos-
itive or negative) when the sample becomes significant. Con-
text-based binary arithmetic coding is extensively used. In this
way, an embedded bitstream is generated for each code block.
This is called the tier-1 coding. At the same time, the rate in-
crease and the distortion reduction associated with each coding
pass is recorded. This information is then used by the post com-
pression rate-distortion (PCRD) optimization stage to determine
each coding block’s contribution to the different quality layers
in the final bit-stream in order to reach the desired bit rates while
optimizing the R-D performance.

Given the compressed bit-stream for each coding block and
the rate allocation result, tier-2 coding is performed to form the
final coded bit-stream. The basic unit in the final bit-stream is a
packet. The formed packets can be of variable sizes. A packet
consists of a packet header and a packet body. The packet header

contains the following information: which coding blocks are in-
cluded in this packet, number of bit planes for each newly in-
cluded coding block (for which no encoded pass have been in-
cluded in previous packets), number of coding passes included
in this packet from each included coding block, and number of
bytes contributed by each included coding block. The packet
body contains the actually coded bits from each coding block.

This two-tier coding structure gives great flexibility to the
final bit-stream formation. By determining how to assemble the
sub-bitstreams from each coding block to form the final bit-
stream, different progression (SNR, resolution, position) order
can be realized.

In the JPEG2000 post compression rate-distortion optimiza-
tion process, the distortion metric can be the conventional MSE.
In this case, the rate allocation attempts to minimize the peak
signal to noise ratio (PSNR). One can also choose other per-
ceptual distortion metrics that take various HVS properties into
consideration [7]. Methods that truncate the bitstream based on
distortion or rate-distortion slope values have been proposed for
applications which require more consistent image quality [9].

From the above description, one can see that there are two
layers of rate or distortion control in JPEG2000. First, the rate
or distortion can be roughly controlled by the quantization step.
This can be performed on a subband by subband basis. In Part
1 of the standard, only uniform scalar quantization with a dead-
zone twice the regular step size is included, as illustrated in
Fig. 2. For the MSE distortion metric, the quantizer for each
subband can be set to be inversely proportional to the amount
of spatial-domain errors introduced by a coefficient unit error
in the considered subband. This is also suggested in the infor-
mative part of the standard [30]. For perceptual criteria, one can
choose the quantizer to be inversely proportional to the contrast
sensitivity threshold of the considered subband, or be propor-
tional to the visual detection thresholds [21].

Finer rate or distortion control is achieved by the selective
inclusion of coding passes on a coding block basis. Given the
rate-distortion information collected in the tier-1 coding for
each coding pass of each coding block, the post compression
rate-distortion optimization attempts to figure out the optimal
coding pass inclusion strategy for different quality layers. First,
a convex hull search is performed to find out the candidate
(R, D) truncation points for each coding block. Each coding
pass determines a point in the R-D plane. After the convex
hull search, only those points on the convex hull are kept as
candidate truncation points. The R-D slope values associated
with each candidate truncation points are stored. Given the
R-D curve for each coding block, a bisection search can be
performed among all the coding blocks to find the R-D slope
values that meet the desired bit rate. Those coding passes with
steeper R-D slopes are included in the final bitsteam. Those
coding passes that are not included in the final bitstream are
ignored.
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Fig. 3. Embedded uniform scalar quantizer with deadzone twice the step size.

Fig. 4. Block diagram of the JPEG2000 encoding with perceptual distortion control.

From above, we can see that parts of the bitstream generated
in the tier-1 coding are discarded. Since the embedded bitplane
coding is the most complex part in the JPEG2000 compres-
sion system, computational power and memory is wasted on en-
coding and storing those finally discarded coding passes [5], [6].
Rate control methods [5], [6] and some JPEG2000 implemen-
tations such as Kakadu [4], [31] attempt to reduce this wasted
complexity. It is desirable, however, to develop a rule to pre-de-
termine the number of coding passes that should be encoded for
each coding block before the embedded bitplane coding starts
or make this decision in parallel with the embedded bitplane
coding. However, under the current post compression rate-dis-
tortion optimization framework, it is very difficult to make this
decision with sufficient accuracy to avoid discarding the en-
coded data.

IV. JPEG2000 ENCODING WITH PERCEPTUAL

DISTORTION CONTROL

One question we should ask is whether achieving a certain bit
rate is so important for a compression algorithm design. For cer-
tain applications such as transmission over channels with lim-
ited bandwidth, one definitely needs to reach a precise rate con-
trol. But for a lot of other applications, the quality and, espe-
cially, the perceived quality matters. In this work, we take a dif-
ferent perspective to this rate-distortion optimization problem.
The goal is to reach the lowest bit rate for a desired percep-
tual quality. Depending on the perceptual model and complexity,
several encoding approaches can be proposed.

If only the base detection threshold for each subband is
considered, approximate distortion control can be easily imple-
mented in one of two ways. Note that the embedded bitplane
coding of JPEG2000 is essentially a family of uniform scalar

Fig. 5. DWT coefficients affecting the foveal region reconstruction.

quantizers with dead-zones twice the regular step size as
illustrated in Fig. 3. At bitplane level , the effective quanti-
zation step size is . For the midpoint reconstruction, the
quantization error at the end of bitplane is less than for
insignificant coefficients and for significant coefficients,
respectively. Thus, with the quantization step set to 1 in the
quantization stage, one just needs to code each coding block in
a subband down to the following bitplane level

(14)

for perceptual lossless coding. This is the threshold point at
which the distortion will become just perceptible. This percep-
tual lossless point constitutes a natural target for high quality
image coding, which is important in applications where loss in
quality can not be tolerated, such as medical imaging. This per-
ceptual lossless point can also be used as a benchmark for per-
formance comparison with other coders. For other perceptual
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Fig. 6. Images used in performance comparison. From left to right: 512 512 Lena, 720 576 Goldhill, 2048 2560 Woman, and Bike images (size of all
images reduced to fit within the space).

qualities, one can increase the by an appropriate posi-
tive integer number.

The same result can also be achieved by using a quantizer for
each subband that will result in a quantization error that is just at
the threshold of visibility and then coding all the bitplanes after
quantization. Therefore, with denoting the display resolution,
for perceptual-lossless compression, one just needs to set the
quantizer step size on a subband-by-subband basis to

(15)

which will result in a quantization error that is just at the
threshold of visibility. Other perceptual quality can be reached
by scaling up the for each subband by a common
factor, resulting in supra-threshold coding at multiples of the
JND level. After quantization, all bitplanes are coded in tier-1
coding and included in the final bitstream. In the JPEG2000
bitstream syntax, there is the QCD marker segment where one
can specify the quantizer stepsize for each subband.

If the luminance masking and contrast masking are also con-
sidered, more precise distortion control can be performed. Fig. 4
shows a block diagram of the proposed JPEG2000 encoding
with precise distortion control. After the discrete wavelet trans-
form, the transformed wavelet coefficients are first quantized.
The quantizer for subband is set to the base detection
threshold

(16)

The luminance masking and contrast masking adjustments
are then calculated using the quantized wavelet coefficient
values. So, the luminance masking adjustment (4) can be
calculated as

(17)

where , and
with .

The self contrast masking (6) and neighborhood contrast
masking (7) can be expressed as

(18)

(19)

where with .
The distortion expressed in (12) becomes

(20)
where is the error caused by the bitplane coding of
the quantized wavelet coefficients and by bitplane truncation
and can be shown to be equal to .

For a given viewing condition, the luminance and contrast
masking adjustments can be calculated on a coefficient-by-
coefficient basis using (17)–(19). Since the masking thresholds
are just needed at the encoder side for distortion control, the
actual quantized DWT coefficients can be used to derive the
masking threshold profile at the encoder since these are not
needed at the decoder.

The size of the foveal region in the spatial domain can be
calculated using (9). In addition, as defined in Section II-B,
represents the set of all DWT coefficients affecting the foveal
region reconstruction. Let represent the DWT coeffi-
cients in subband that affect the foveal region reconstruc-
tion. Then, . can be determined in
two ways. If we consider the filter length and boundary exten-
sion, can be determined as done for the mask generation
in the Region of Interest (ROI) coding mode of JPEG2000 [30].
For simplicity, can also be approximated as a horizontal
and vertical down-sampling by a factor of 2 of the foveal region
with each level of DWT decomposition, as shown in Fig. 5.

Let and denote the number of
coefficients in and , respectively. Note that

. Define to be

(21)
Then in (20) can be expressed as

(22)



1770 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 7, JULY 2006

Fig. 7. Comparison of conventional JPEG2000 coding (Conventional), approximate distortion control (Approx DC) and precise distortion control (Precise DC)
without neighborhood masking in terms of PSNR and perceptual distortion . (a) 512 512 Lena; (b) 720 576 Goldhill; (c) 2048 2560 Woman.

The perceptual distortion of (13) can be made to be equal
to a desired target distortion by controlling the coding of

such that

(23)

It is possible for to be smaller than a coding block.
In this case, there are several sets of detectors, in the coding
block, each covering wavelet coefficients. Before

coding starts on a coding block, the initial perceptual dis-
tortions are computed using (21) for the considered
sets of detectors. Since, at the start, nothing is coded yet,
the error in (21) is equal to the initial coefficient
value before bit-plane coding. During the em-
bedded bitplane coding, whenever a coefficient is identified
as significant or refinement coded, the perceptual distortion

is updated. At the end of each coding pass, if the
distortion of all the sets of detectors, in the consid-
ered coding block, are below the desired distortion as in (23),
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Fig. 8. Comparison of conventional JPEG2000 coding (Conventional), approximate distortion control (Approx DC) and precise distortion control (Precise DC)
with neighborhood masking in terms of PSNR and perceptual distortion . (a) 512 512 Lena; (b) 720 576 Goldhill; and (c) 2048 2560 Woman.

coding of that coding block can be stopped and coding of the
next coding block can be started. In this way, one can ensure
that the distortion of any foveal region is below the target
distortion . On the other hand, if the size of is
bigger than the coding block, there is only one set of detectors
that covers the whole coding block. In this latter case, one
needs to control the coding of the coding block such that

,
where is the distortion in the considered coding
block, and denotes the number of wavelet

coefficients in that coding block. Note that is
computed as in (21) but with replaced with the consid-
ered coding block region.

In contrast to the conventional JPEG2000 encoding, the pro-
posed distortion controlled approach stops the coding, for each
coding block, when the target distortion is reached; and there-
fore, there is no need to code all the bitplanes in tier-1 coding
and no need for post compression rate-distortion optimization.

The final compressed bitstream of JPEG2000 is constructed
by packing the independently coded bitstreams of each coding
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TABLE III
BIT RATES FOR THE CONVENTIONAL JPEG2000 ENCODING AND THE PROPOSED JPEG2000 CODING WITH PRECISE PERCEPTUAL

DISTORTION CONTROL FOR CORRESPONDING TO HIGH-QUALITY OR ALMOST TRANSPARENT CODING

block together in some order. By using the perceptual distortion
as the metric of ordering, a perceptual distortion progressive bit-
stream can also be generated, if desired, where the visually im-
portant information is included first [32]. In this bitstream, the
first layer, , contains contributions from coding blocks that
make the perceptual distortion of each foveal region below ,
subsequent layers, , contains additional contributions from
coding blocks that make the perceptual distortion of each foveal
region below . Because the generated bitstream is fully com-
patible with the JPGE2000 Part 1 standard, any JPEG2000 com-
pliant decoder can be used to get the reconstructed image.

As indicated in Section I, visual progressive weighting (VIP)
and visual masking [4, Ch. 16] have been provided as an op-
tion in some JPEG2000 implementations. The Cvis technique,
which is described in [7], attempts to model masking aspects
of the HVS and has been incorporated as part of the Verifica-
tion Model (VM) implementation of the JPEG2000 standard [1].
In addition to introducing a different locally adaptive masking
model for perceptual thresholds and perceptual distortion com-
putation, one main difference between the proposed method and
Cvis is that the proposed method truncates the code-block based
on perceptual distortion thresholds evaluated at each point in the
code-block. On the other hand, Cvis is a PCRD-based truncation
scheme which determines the code-block truncation point based
on an average distortion over the code-block. In the proposed
work, the distortions are computed adaptively based on local
perceptual thresholds by summing over foveal regions (which
can be smaller than the coding blocks). The coding stops when
the distortions over the foveal regions (and not the coding block)
are less than the target perceptual distortion. Coding results and
comparison with Cvis are presented in Section V.

V. CODING RESULTS

The JASPER [2] JPEG2000 implementation is modified
to incorporate the proposed perceptual distortion control. For
approximate distortion control, the quantizer step size of a
subband is set to the base detection threshold of that subband
as discussed in Section IV. The encoding was optimized for
a viewing distance of 60 cm and a 31.5 pixels-per-cm (80

pixels-per-inch) display, which results in a display visual
resolution of 32.9 pixels/degree. The images used for the per-
formance comparisons are shown in Fig. 6. They are the 512
512 Lena, 720 576 Goldhill, 2048 2560 Woman and 2048

2560 Bike images.
Figs. 7 and 8 compare the performance of the proposed pre-

cise perceptual distortion control, and approximate distortion
control encoding methods with the conventional rate-based
JPEG2000 encoding in terms of PSNR and the normalized
perceptual distortion measure defined as

(24)

where is the area over which errors are pooled as given by
(12). Since the bitstream generated by the perceptual distor-
tion control is fully compatible with the JPEG2000 bitstream
syntax, the JASPER JPEG2000 decoder is used in all cases.
From Fig. 7, one can see that the PSNR value obtained by the
approximate distortion control is very close to that obtained
by the conventional JPEG2000 coding with reduced computa-
tional complexity. Since the proposed JPEG2000 encoding with
precise distortion control is optimized to control the encoding
to the local JND profile, and not to minimize the MSE, the
MSE-based PSNR does not well indicate the achieved perfor-
mance for the precise distortion control. However, if the im-
ages are compared in terms of the perceptual distortion mea-
sure, the proposed JPEG2000 encoding with precise distortion
control clearly outperforms the conventional JPEG2000 coder
and the proposed JPEG2000 encoding with approximate distor-
tion control. Note that approximate distortion control exhibits
a slightly decreased performance as compared to the rate-based
JPEG2000 but at a much lower complexity.

Table III compares the bit rates (in bits per pixel) obtained
using the proposed JPEG2000 encoding with precise perceptual
distortion control with those obtained using the conventional
rate-based JPEG2000 coder for almost transparent compression
with . The compression gain is computed as (25),
shown at the bottom of the page.

(25)
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Fig. 9. Coding results for the 720 576 Goldhill image with the proposed JPEG2000 coding with precise perceptual distortion control for a target ,
and comparison with conventional JPEG2000 coding. (a) Conventional JPEG2000, , rate bpp. (b) Proposed JPEG2000 coding with precise
perceptual distortion control, , rate bpp.

Figs. 7, 8, and Table III also show the results obtained using
the proposed perceptual JPEG2000 encoding with precise dis-
tortion control with and without neighborhood masking. One
can see that the neighborhood masking does not significantly
change the performance of the proposed JPEG2000 encoding
with precise distortion control and only self contrast masking.
These results confirm the claim in [22] that the contrast masking
is strongest when both components are of the same spatial fre-
quency, orientation, and location. Due to the high computation
complexity of the neighborhood masking, a contrast masking

model based solely on self contrast masking is adopted and the
remaining reported results are obtained without neighborhood
masking.

Fig. 9 compares the reconstructed images for high-quality or
almost transparent encoding for the 720 576 Goldhill image.
For the proposed JPEG2000 encoding with precise distortion
control, images are obtained with target distortion .
This results in a bit rate of 0.341 bits per pixel (bpp) and actual
distortion . The conventional JPEG2000 encoding
result is obtained by trying to match the distortion obtained with
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Fig. 10. Coding results for the 2048 2560 Woman image with the proposed
JPEG2000 coding with precise perceptual distortion control for a target

, and comparison with conventional JPEG2000 coding. (a) Portion
of original Woman image. (b) Conventional JPEG2000, ,
rate bpp. (c) Proposed JPEG2000 coding with precise perceptual
distortion control, , rate bpp.

the proposed JPEG2000 encoding with precise distortion con-
trol. This results in a bit rate of 0.394 bpp and an actual distortion

.
Figs. 10–12 compare the reconstructed 2048 2560 Woman

and Bike images obtained using the conventional JPEG2000
coding with those obtained using the proposed JPEG2000
coding with precise perceptual distortion control at the same
bit rate. For the proposed JPEG2000 coding with precise
distortion control, the images are coded with the target dis-
tortion set to 1.0. The conventional JPEG2000 images

Fig. 11. Coding results for the 2048 2560 Woman image. (a) Portion of
original Woman image. (b) Conventional JPEG2000, , rate

bpp. (c) Proposed JPEG2000 coding with precise perceptual distortion
control, , rate .

are obtained by matching the bit rate obtained using the pro-
posed JPEG2000 coding with perceptual distortion control.
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Fig. 12. Coding results for the 2048 2560 Bike image with the proposed
JPEG2000 coding with precise perceptual distortion control for a target

, and comparison with conventional JPEG2000 coding. (a) Portion
of original Bike image. (b) Conventional JPEG2000, ,
rate bpp. (c) Proposed JPEG2000 coding with precise perceptual
distortion control, , rate bpp.

Portions of the Woman image are shown in Figs. 10 and 11.
Clear differences can be seen when the resulting images are
viewed on a CRT monitor. The proposed JPEG2000 coding
with precise perceptual distortion control preserves the low
amplitude texture much better than the conventional one. In
the conventional JPEG2000, the skin texture is almost erased,
but is relatively well preserved in the proposed JPEG2000
coding with precise perceptual distortion control, especially in
the forehead and cheek areas (Fig. 10), and in the hand and
hair areas (Fig. 11). Similar observations can be made from

Fig. 13. Mean opinion score as a function of bit rate for the 512 512 Lena
and 720 576 Goldhill image coded using conventional JPEG2000 encoding
and JPEG2000 encoding with precise perceptual distortion control. (a) MOS for
512 512 Lena image; (b) MOS for 720 576 Goldhill image.

Fig. 12, which shows coding results for the Bike image. When
these images are compared on a screen, it can be observed
that the conventional JPEG2000 encoding totally wipes out the
texture on the background table cloth, the tennis handle and the
top surface of the liquid, and that it blurs the boundary of the
bike wheel. In comparison, the JPEG2000 coding with precise
perceptual distortion control preserves this texture information
much better and presents the high frequency contours of the
bike wheel very crisply.

A set of subjective impairment tests have been conducted to
compare the coding performance in terms of perceived quality
for the proposed JPEG2000 encoding with precise perceptual
distortion control and the conventional JPEG2000 encoding.
The Double Stimulus Impairment Scale (DSIS) method [33] is
adopted. In the test, a sequence of image pairs consisting of the
original image and reconstructed image at various bit rates are
displayed on a computer monitor with a display resolution of
80 pixels per inch. The subjects were asked to rate the amount
of impairment in the decoded images using a five-level scale
[33]. The categories on the scale and their numerical values are
“imperceptible” (5), “perceptible, not annoying” (4), “slightly
annoying” (3), “annoying” (2), and “very annoying” (1). The
suggested viewing distance was 60 cm (23.6 inches). The group
of viewers consisted of 15 individuals with normal or corrected
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Fig. 14. Coding results for the 2048 2560 Woman image with the proposed JPEG2000 coding with precise perceptual distortion control for a target ,
and comparison with existing JPEG2000 coding with visual masking (VM with Cvis on) at the same resulting bit-rate; the face portion of the coded woman image is
shown. (a) Existing JPEG2000 with visual masking (VM with Cvis), rate bpp. (b) Proposed JPEG2000 coding with precise perceptual distortion control,
rate bpp.

to normal vision. The mean opinion score (MOS) results for the
impairment test for the 512 512 Lena and 720 576 Gold-
hill images are shown as a function of bit rate in Fig. 13. They
indicate that the proposed JPEG2000 encoding with precise dis-
tortion control results in an improved perceived image quality
as compared to the conventional JPEG2000 encoding method.

In order to compare the performance of the proposed
perceptual JPEG2000-based coding scheme with existing
visual weighting schemes that are compatible with Part I of
JPEG2000, the 2048 2560 Woman image was also coded,

at the rate of 0.586 bpp, using the VM8.0 JPEG2000 imple-
mentation with the Cvis option [7] (run with an exponent of
0.5 as recommended [4, Ch. 16, Sec. 16.1.4]). The Cvis option
incorporates visual masking into the JPEG2000 encoding.
Portions of the resulting coded Woman image are shown in
Figs. 14 and 15. The corresponding original images are shown
in Figs. (10a) and (11a), respectively. As before, the proposed
perceptual JPEG2000 coding preserves better the skin texture
in the forehead, cheek, hand, wrist, and hair areas. In addition,
the edges and lines of the hand and hair are better preserved by
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Fig. 15. Coding results for the 2048 2560 Woman image with the proposed
JPEG2000 coding with precise perceptual distortion control for a target

, and comparison with existing JPEG2000 coding with visual masking (VM
with Cvis on) at the same resulting bit-rate; the hand portion of the coded woman
image is shown. (a) Existing JPEG2000 with visual masking (VM with Cvis),
rate bpp. (b) Proposed JPEG2000 coding with precise perceptual
distortion control, rate bpp.

the proposed scheme as compared to the existing JPEG2000
encoding with visual masking (VM with Cvis).

VI. CONCLUSION

A distortion-controlled JPEG2000 encoding method is pre-
sented with the goal to achieve consistent reconstructed image

quality while reaching the lowest possible bit rate for the desired
perceptual distortion. For this purpose, a vision model that takes
into account various masking effects of human visual perception
and a perceptual distortion metric that takes spatial and spectral
summation of individual quantization errors are incorporated
into the JPEG2000 coder design. The proposed new encoding
method is compatible with Part I of the JPEG2000 standard and
the generated bitstream can be decoded by any JPEG2000 de-
coder. Compared with the conventional rate-based JPEG2000
encoding, the proposed method provides a way to generate con-
sistent quality images at a lower bit rate.
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